A

(,{. Andrew P. Sage v

?C FACILITY FORM 602

/ﬂ/ﬁij

(HIEWNN AY HO XWJL 3O UD ¥YSVYN

(AMODILYD)

(3a02D)

T p

{(¥3EWNN NOISS3DDY)

veVe8-29)Y

(NMHL)

L

,solution of an optimal nonl inear®con
.of an open-loop control for a system with known dynamics over the time inter=

?SOPTIMAL AND SUBOPTIMAL GUIDANCE AND Vi
CONTROL FOR LOW THRUST ORBITAL TRANSFER (- H

'ﬁThomas W. Ellis

~ Y \ 2 Department of Electrical Engineering j y

R - University of Florida ' - ~[f#; .

AN Gaunesvnlle Florida i “)[\ f':igéj
ABSTRACT

A suboptimal feedback solution to the problem of guidance and control of
a vehicle during flight is presented. Optimum open loop solutions for the
minimum time and minimum fuel problem for low thrust orbital transfer have
been previously obtained. As a further step in the implementation of the re-
sulting trajectories, it is desired to obtain closed loop suboptimal controllers
which generate these trajectories. To this end, the nonlinear equations of
motion for orbital transfer are modeled by a linear time varying system of
assumed form. This system is assumed stationary over subintervals of time
which allows an on-board computer to generate a sequential control law which
minimizes an integral of a quadratic form of error and control effort in such
a fashion as to produce system trajectories which do not differ significantly
from the optimal trajectories. Computation time and storage requirements are
such as to suggest feasibility of the proposed method for on-line operation.

INTRODUCTION

Much recent attention has been given to the solution of optimal control
problems for nonlinear aerospace systems. This effort has resulted in a
variety of methods for the computational solution of nonlinear two point
boundary-value problems. [1,2] In these boundary-value problems half of the
boundary conditions are specified at the final time. This implies that an

a-priori knowledge of the complete system dynamics must be known over the

time interval of operation te (t , Thus in a large number of cases,

grol problem results in the determlnatnon
vai of operai.ion. in maiy insiances, a blUDCU-IUUp contro! i3 desired. A‘."C,
if there are process variations, environmental changes, or uncertainties in
the system mode!, the complete knowledge of system dynamics necessary to
predetermine the cpen-loop control cannot ce cbtained. For the case of a
linear system with known constant coefficiants, the closed-loop control can
be obtained with relative ease. 3. This saper attempts to develop, and
provide experimental justificaticn Tor, a suboptimal guidance and control
scheme for low thrust orbital vehicies based, in part, on the identification
of a linear model and use of the real time computational simplicity of linear
systems with quadratic cost functions.

Specifically this paper develops a method for on-line control which can
be computed rapidly due to the identification of a linear model for the plant,
and which introduces feedback by sequentially monitoring the system at dis-
crete time instants and updating the control. The model chosen is a linear
time-varying system which is assumed stationary over subintervals of time,
thus allowing a controller to generate a sequential control law which minimizes,

not the given performance index, but a closely related one. The resulting
control is of course only an approximation to the optimum control. However,

due to process and environmental variations which cannot be foreseen, it may

bl "




substantially reduce the cost over that which results from a predetermined open-
loop control.

DERIVATION OF CONTROL LAW

In the problem to be examined, it is desired to force the system to follow
_a precomputed ''optimum'' solution even though the system may encounter certain
environmental changes or noise which were not accounted for in the precomputed
solution. In general, additional cost is required for doing this as well as
large computer storage requirements. Several schemes have previously been
developed for accomplishing this. [4,5] Here the emphasis is placed on the
simplicity of the control, the ease, and speed with which it may be computed,
and -possible minimization of storage requirements.

Assume a given system of the form (1) with cost function (2).

. (1)

x=f (x, , t) ZS(to)=
t

o~

J=0Ix (tf)]‘“sf@(i'&, t) dt (2)
t
o

Here, g =X - Xy and X, represents the desired final state of the system

at time t .

The optimum solution is found using any one of several methods. Then

the state vector for t = t_, t] me1’ is stored for future use and
Adesugnated (t ). if the time |ncrements At, =t t. are equal,
= f - mAt For the suboptimal confrol éc%eme {he system is identi~
f|e8 as
x=A(t;) x+8(t;)u (3)

where A and B are constant matrices over the interval te (t R ti+
subinterval, a cost functlon of the form

[x (tp) - (ti+1)]l Pl () -y (ti+l)>]

l)' For each

f'Hg R (t;) @ dt (4)

is chosen. The elements of P determine how closely the predetermined ''optimum'
solution should be followed. The total cost is given by

-1
= g: Vi (5)
i=o0
At each t = t, the two point boundary-value problem must be solved, at least
for the initial values of the control. |If the subinterval length is sufficiently

" small, the control can be held constant over the entire subinterval with only



very slight difference from the results with a Variable control.
By utilizing the maximum principle of Pontryagin [6], the suboptimal control
can be found. The Hamiltonian, H, is written as, _

He g R AT (A (e,) x4 8 (t) ul (6)

For notational simplicity it is desirable to write A (t,) and B (t,) as A and
B since they are constant matrices over each subinterval. By application of
the ‘maximum principle the canonic equations are

- (7)
w=-R'8 )
. ' (8)
X=Ax+Bu ‘
. (9)
- _ Al
A=cAR (10)
x () = x, _
The transversality conditions at t = ti+l gives
A () = P Ix () - ()] (o

It is desirable to convert (7) through (10) into equations for which the
control can be computed directly. With this in mind, it is convenient to
define an n-r dimension vector g as being

g

kr+]
e- | N
Mo (12)
iBy adjoining this gfvector to the W vector there results
w 1 [ 1T }\
""" N (13)
g 0!I :
where I is an (r x r) identity matrix. Let
‘ -1 T
M = _:5--;.5--_ (14)
0 :I '
u =
[ p ] r (15)
Thus, A=w'T - | - (18)

A=Mlp | (17)



Equations (8) and (9) become

P=06r (19)
- T ] :
where 6=-MA M

and C is an n x n matrix defined by
1
= [Bl0].

The initial conditions on X are given by (11), and the endpoint conditions on
DN are given by

L (ty) = l::-ffltl)_]= :B::_BI P Ix (t,,,) x4 (t,,,)] (20)
| g(ti)] [0t
P(t,) = MP.Ix(t,,)) - x, (t;,)] | (21)

where I is an (r x r) identify matrix.

The solution of (18), (19), (21) and (10) is given by

R e e
“where I (ti)‘is yet to be found. To do this, define
[e-:-gl(t-t ) = ?’.S’.‘-EE:ELZ;.?’.‘E-SE:EL?.- b' (23)
Jorel Ve, (e o L (eety)
¢;u:d-t; Bl‘ P is known in term; of x. Utillzing this Information, D'(t,) I
F(e) = I8 x (£,,) + P xg (g,)] (24)
=P °xr (tgmtp) = Opn (ry0ty) (25) -
Vo= d (tmt,) = PO (-t ) (26)

Since the first r components of I comprise the control vector, the control can
be applied after computing (24).

This method of control is then combined with a suitable scheme for identi-
fication to implement the on=line controller. Quasilinearization [7] and
invariant imbedding techniques [8,9] have been found effective for on-line
identification [10].



LOW THRUST ORBITAL TRANSFER

As an example of this type of control, consider the problem of minimizing
the fuel consumption of a low thrust rocket which is to transfer from the .
orbit to Earth to the orbit of Mars in fixed time. The orbits of Mars and _
Earth are assumed to be circular and coplaner, and the gravitational attractions
of the two planets are neglected. The problem has been previously formulated
and solved for the open-loop control assuming an inequality constraint on
propellant mass flow, B, or thrust. [11] The normalized dynamics and boundary
conditions are given by

r=w (Radial velocity)
. 2
W= % - %2 + ﬁé sin 6 (Radial acceleration)
V= - %l + %E cos 6 (Circumferential acceleration)
m= - B ' (Mass flow)
r(0) = 1.0 r(tf) = 1.52
w(0) = 0.0 w(t.) = 0.00
v(0) = 1.0 v(tf) = 0.8]
m(0) = 1.0 m(tf) ~ open
with K="1.00
C=1.872
Bmax = 0.075
Bmin = 0.0

where the final time, t_, is 3.816 units which corresponds to 222.0 days and O
is the thrust angle measured from the local horizontal. It is desired to
minimize the fuel consumed or equivalently the cost function ‘

P = -m(tf)

Computational results show that the open-loop control! is a bang-off-bang
type. However, in actual practice, due to measurement errors, noise, etc., it
may not be desirable to apply this as a precalculated open-locp control, especi=
ally since near impact the system may require more than the open-loop Bha to
match the critical endpoints. For this reason, trajectory control seems Feasible
since it monitors the system and tends to keep it tracking the precalculated
trajectory, although possibly at more cost. ‘

The non-linear dynamics given above are modeled as a linear non-stétionary
system of the form

(27)

(28)




L = v(ti) v -

K C 2
r(t;) r(t;) 2" m(t,) " | 29
ve VD) s ¢ (30)
r(ti) m(ti) 2
with u, = Bsin© . (31)

= B cos O,

The total time for the flight (222 days) is divided into 37 subintervals te(t,, t, ')
where i = 0, 1 ---, 36. Thus each subinterval corresponds to 6 days. It is : I+
desired to minimize the cost function

t
| i+l 2 2
+> f a(u,” + u,”) dt
i+l 2 ti I 2
(32)

1 N2 1 2
J=lgpyy (w-wd®+ 5y, (v v) Il

over each of these subintervals where
Py = 1000.0

Py, = 1000.0

and a= 1.0. ,
The values for Wy and v, at each t, , are taken from the optimal open-loop trajectory.

. d i+l
The Hamiltonian is glven by (6) as
1,2 2 v(t.) -v(t,) |,
He = af Y + A, [ - _K + c ]+ A [
A IS B oI o B o R o i
+_C _u,] (33)
m(t,)

and equations (9), (13), (15), and (19) yield for the canonic equations:

o vt K .+ _C (34)

" r(t;s Y r(ti)2 m(ti) “

; = -V(ti) wt _C _u, (35)
r(ti) m(ti) .

u = YD (36)
r(t 5

; = -V(ti) u (37)

2 ?(;;y— 1
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